skip to main content


Search for: All records

Creators/Authors contains: "Franklin, Diana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Quantum computing presents a paradigmatic shift in the field of computation, in which unintuitive properties of quantum mechanics can be harnessed to change the way we approach a wide range of problems. However, due to the mathematics and physics perspective through which quantum computing is traditionally presented, most resources are inaccessible to many undergraduate students, let alone the general public. It is thus imperative to develop resources and best-practices for quantum computing instruction accessible to students at all levels. In this paper, we describe the development and results of our Massive Open Online Course (MOOC) "Introduction to Quantum Computing for Everyone." This course presents an introduction to quantum computing with few technical prerequisites. In the first half of the course, quantum computing concepts are introduced with a unique, purely visual representation, allowing students to develop conceptual understanding without the burden of learning new mathematical notation. In the second half, students are taught the formal notation for concepts and objects already introduced, reinforcing student understanding of these concepts and providing an applicable context for the technical material. Most notably, we find that introducing the math content in the curriculum's second stage led to no drops in engagement or student performance, suggesting that our curriculum's spiral structure eased the technical burden. 
    more » « less
  2. Quantum computing (QC) is an emerging field at the intersection of computer science and physics. Harnessing the power of quantum mechanics, QC is expected to solve otherwise intractable problems significantly faster, including in encryption, drug development, and optimization. High-quality and accessible QC resources are needed to help students develop the critical skills and confidence to contribute to the field. However, existing programs are often aimed at college students with an advanced mathematics or physics background, shutting out potential innovators. To make quantum learning resources for a broad, young audience, we designed Qupcakery, a puzzle game that introduces players to several core QC concepts: quantum gates, superposition, and measurement. We present preliminary testing results with both middle school and high school students. Using in-game data, observation notes, and focus group interviews, we identify student challenges and report student feedback. Overall, the game is at an appropriate level for high school students but middle school students need more levels to practice when new concepts are introduced. 
    more » « less
  3. There is an increasing need for knowledgeable K-12 computer science (CS) teachers. It is necessary to inform teachers how to debug and help their students debug programs. Research has shown that debugging is difficult for novices because the process requires different skills from creating programs and instructing students how to debug can help them acquire these skills. To this end, we developed a CS professional development for middle grade teachers (grades 5th-8th/ages 10-13) that includes lessons on debugging. The teachers completed debugging activities that involved finding bugs in Scratch programs and explaining how they would help their students in debugging. We qualitatively analyzed their responses and found that teachers successfully identified the problem but they struggled to locate it in the code. In considering how they would help students who had such a bug, the teachers often focused on helping the student find a solution for the bug rather than on identifying the problem or its source. Finally, teachers’ ability to identify bugs and the pedagogical strategies to engage students in this process differed based on CS teaching experience and prior CS knowledge. This work contributes to our understanding of teachers’ debugging abilities and advances our knowledge on how to support teachers in teaching their students how to debug their programs. 
    more » « less
  4. In 2020, the world confronted an unprecedented event affecting education globally: COVID-19. Events that disrupt education are not new; Homelessness or trauma negatively impact education at an individual level, whereas war stops education completely. This event is unique in that it caused the cessation of in-person instruction for all but with a rapid transition to remote instruction. In this study, we explore how the COVID-19 pandemic affected instruction of Scratch Encore Curriculum, a Scratch curriculum typ- ically used in middle grades with students between 10-14 years old. We analyzed a variety of data sources, including partner classroom- level data as well as anonymous download data. We found that instruction halted abruptly in the United States at the beginning of the March lockdown, with no further instruction that spring. With the introduction of online instructional materials, instruction resumed to normal levels during the 2020-21 school year (which was remote instruction for much of the year). In addition, students completed projects with similar accuracy and completeness during remote instruction as compared with in-person instruction prior to the pandemic. 
    more » « less
  5. Open-ended tasks can be both beneficial and challenging to students learning to program. Such tasks allow students to be more creative and feel ownership over their work, but some students struggle with unstructured tasks and, without proper scaffolds, this can lead to negative learning experiences. Scratch is a widely used coding platform to teach computer science in classrooms and is designed to support learner creativity and expression. With its open-ended nature, Scratch can be used in various ways in the classroom to meet the needs of schools and districts. One challenge of using Scratch in classrooms is supporting learners in exploring their interests and fostering creativity while still meeting the instructional goals of a lesson and ensuring all students are engaged with, and understand, focal concepts and practices. In this paper, we investigate the use of planning sheets to fa- cilitate novice programmers designing and implementing Scratch programs based on open-ended prompts. To evaluate the plan- ning sheets, we look at how closely students’ implemented Scratch projects match their plans and whether the implemented Scratch projects met the technical requirements for the given lesson. We analyzed 303 Scratch projects from 155 middle grade students (ages 10-14) who were introduced to programming via the Scratch Encore Curriculum. Completed Scratch projects that used planning sheets (202) were qualitatively coded to evaluate how closely they matched the initial plan, and Scratch programs (303) were analyzed with an automated grader to check if technical project requirements were met. Our results reveal that students that used planning sheets met significantly more technical project requirements and had more complex structures than those that did not have planning sheets. Results differ based on teacher and type of planning sheet used (physical vs. virtual). This work suggests that planning sheets are a helpful tool for young learners when completing open-ended coding projects. 
    more » « less
  6. Given the increasing interest and need to teach students computer science in formal education settings, it is imperative to understand how to do so effectively and equitably. An important step of learning to program is being able to define the objective of a program and then plan out how to implement a program to produce the desired outcome. This step is particularly important in younger learners who may have little experience with programming or trying to create their own technological artifacts. In this paper, we explore how to scaffold young programmers in planning their open-ended programs as part of an intermediate Scratch curriculum for middle grade students. We analyze 203 paper and virtual planning documents from 103 5th-8th grade students. Our results reveal that the students often completed a majority of the document, which was consistent across grade levels. However, we found differences in student completion based on teacher and between physical and virtual documents. This work advances our understanding of how to support novice, young programmers in planning programs. 
    more » « less
  7. There is a need for more K-12 computer science (CS) teachers. The need to scale teacher professional development (PD) points the CS education community towards virtual learning, and prior work shows that in-person PD with a diffuse schedule is more successful than condensed schedules. There is currently little research about virtual K-12 CS PD with a diffuse schedule. The pandemic served as a forced opportunity to explore the design and implementation of a diffuse-scheduled virtual PD for two small, equally-sized cohorts of middle school (grades 5-8) teachers; one from a metropolitan school district and another from across the United States. Our findings reveal several important post-pandemic design implications for future CS PD programs. First, the teachers’ CS knowledge and attitudes significantly increased in both cohorts. Second, there were no significant differences in attitudes or achievement between the cohorts. Third, the teachers in the virtual PD showed as good changes or better in attitude than those in a prior in-person PD. Finally, both cohorts were largely positive about the change from a few intensive PD days to a few hours a week for several weeks, even as they joined from vacations. 
    more » « less
  8. null (Ed.)